
193

5th Workshop on Formal Methods

Automation of a Normal Form Reduction

Strategy for Object-Oriented Programming

Bruno Lira, Ana Cavalcanti, and Augusto Sampaio

Centro de Informática - Universidade Federal de Pernambuco

Recife - PE, Brasil

{bol, alcc, acas}@cin.ufpe.br
http://www.cin.ufpe.br

Abstract. The work presented in this paper builds on previous results

which define a normal form reduction strategy for ROOL, an object-

oriented language similar to sequential Java. The purpose of this reduc-

tion process is to establish relative completeness of a set of algebraic laws

for the object-oriented features of ROOL. The purpose of the present

work is to show how each algebraic law can be encoded in the Maude

term rewrite system, and how the reduction engine of Maude can be used

as an automatic tool to mechanize the reduction process.

1 Introduction

There are several approaches for defining the semantics of a programming lan-
guage: operational, denotational, algebraic, etc. In the algebraic approach, the
semantics is presented as a set of laws which relate the programming constructs.

The algebraic style has several distinguishing features:

1. As algebraic laws are directly expressed in programming terms, they can be
promptly used for program transformation.

2. No explicit model is built in a algebraic style, unlike in operational or deno-
tational semantics. Therefore, extending an algebraic semantics tends to be
more modular.

3. Algebraic laws are easily mechanisable as rewrite rules in a term rewrite
system like OBJ3 [10] or Maude [8].

These potential advantages have motivated several efforts concerning the def-
inition of algebraic semantics of programming languages. Concerning imperative
programming, there is the classical work of Hoare et al [12]. For concurrent pro-
gramming, we single out the laws of occam [16], as proposed by Roscoe and
Hoare.

Only recently, laws of object-oriented programming have been given the de-
served attention. In [3], Borba and Sampaio propose a comprehensive set of laws
for the object-oriented features of ROOL, a language similar to sequential Java,
but with a copy rather than a reference semantics [5, 6].

194

5th Workshop on Formal Methods

Although the algebraic approach has the potential advantages mentioned
above, it also presents some inherent difficulties. One is related to the complete-
ness of the proposed algebraic laws; another concerns their consistency.

Completeness is usually addressed by showing that the laws are sufficient to
reduce an arbitrary program to a normal form expressed in terms of a small
subset of the language operators. This has been adopted in [12, 16, 4]. Consis-
tency is proven by appealing to an another independent semantics, usually in
the denotational or operational style.

In this paper, we show how the laws proposed in [4] can be encoded as rewrite
rules in Maude. We then use Maude’s rewrite engine to show how an arbitrary
program can be automatically reduced to a normal form. This serves as an
operational proof of the relative completeness of the proposed set of rules and as
a case study of Maude as the backend for a more complex tool to suport advanced
object-oriented programming techniques. It also serves as a transformation tool,
in that the rules can be used for program transformation.

Existing works to validate a Java semantics using a theorem prover and
other tools [15, 18] are based on an operational semantics. Validation is obtained
through interpretation. Our aim in this work is different: reduction of programs
to a normal form.

2 Rool

ROOL is an object-oriented language based on Java, but with a copy semantics
rather than a reference semantics. It has been specially designed to allow rea-
soning about object-oriented programs and specifications, based on Morgans’s
refinement calculus [14]. The language was fully described in [5] and [3]. We give
here just a general view of the language.

A program in ROOL is written as cds • c, for a main command c and a set
of class declarations cds. Classes are declared according to the following scheme:

class C1 [extends C2]
{pri x1 : T1 ;}* {prot x2 : T2 ;}* {pub x3 : T3 ;}*
meth m = (pds . c) end;

end.

where Cn are classes’ names; xn are valid names for identifiers, and Tn are data
types of ROOL (basic types, such as integer or boolean, or class name).

Subclassing and single inheritance are supported by the extends clause, which
is optional. Its absence means that the class is a direct subclass of Object, which
is a superclass of all classes in ROOL. There are three visibility qualifiers for
attributes in our language: pri, prot and pub for the private, protected and public
atributes, respectively, with similar semantics to Java. For simplicity, we consider
only public methods,which can have value, result, and value-result parameters.
The list of parameters are separated from its body by the symbol •.

In addition to method calls, the body of methods may have imperative con-
structors similar to the ones adopted by Morgan [14].

195

5th Workshop on Formal Methods

c ǫ Com ::= | le := e | c ; c multiple assigment, sequence
| pc(e) parameterized command application
| if []i • Ψi → ci fi alternation, with condition Ψi

| rec X • c end | X recursion, recursive call
| var x : T • c end local variable block
| avar x : T • c end angelic variable block

Methods are seen as parameterized commands, which can be applied to a list of
arguments to yield a command. Therefore, method calls are represented as the
application of parameterized programs.

A parameterized command is composed by a parameter declaration followed
by a command or a reference to a method. This can be a method m of the
current class or a call le.m with target object le.

pc ǫ PCom ::= pds • c parametrization
| m | le.m | method calls

pds ǫ Pds ::= ∅ | pd | pd ; pds | parameter declarations
pd ǫ Pd ::= val x : T | res x : T | vres x : T |

Methods in ROOL cannot be mutually recursive, but classes can.

For expressions, ROOL supports typical object-oriented constructors:

e ǫ Exp ::= self | super special ’references’
| null | new N null ’reference’, object creation
| x | f(e) variable, built-in application
| e is N | (N) e type test, type cast
| e.x | (e ; x : e) attribute selection and update

where self and super has the same semantics to this and super in Java, respec-
tively, and the update (e1 ; x : e2) denotes a copy of the object denoted by e1,
but with the attribute x mapped to a copy of e2.

We identify a subset of the expressions, named Le, that can appear at the
left side of an assignment or as a target of a method call: any variable (x), the
access to an object’s attribute (le.x), a type cast ((N) le) and self .

An expression is simple if it has one of the following forms, where bop and
uop stand for binary and unary operators, respectively.

SimpleExp ::= | self | null | new N

| x1 bop x2 | uop x

| x | x is N

| (N) x | x1.y2

| (x1 ; x2 : x3)

This notion is used in the normal form definition.

196

5th Workshop on Formal Methods

3 A Normal Form

The main objective of our work is to automatize the process of reducing a ROOL

program to a normal form [4], therefore, demonstrating the completeness of the
algebraic rules of our language. So, if we want to reach our goal, we must use a
suitable normal form, which we call Subtype Normal Form.

By definition, a ROOL program cds • c is in Subtype Normal Form if it
obeys the following conditions:

1. Each class declaration in cds includes only the clause extends; no explicit
declaration of methods (including constructors) or attributes are allowed.
The only exception is Object which may include declaration of attributes
(each with either a primitive type or the type Object itself).

2. All the local variables in the main command c are also declared to have a
primitive or Object type.

3. No type cast is allowed in c.

A program in this normal form preserves some object-oriented features, such
as subtype hierarchy, creation of objects, and type tests. In spite of this, it is very
close to an imperative program as in the work of Hoare [12]. Object takes the
form of a recursive record, and the main command is practically an imperative
program with the added possibility of creating objects and making type tests.

We could advance more in the reduction of ROOL programs, defining a nor-
mal form which would be completely imperative, eliminating all the object-
oriented features. For this, we need some sort of encoding in the style of a
mapping from an object to a relational model, as an extra variable (attribute or
field) would be necessary to record the type information. Such advance would
bring a considerable increase in its complexity to the reduction strategy, and so,
is left as a topic for further research.

The reduction process involves the following major steps. First move all code
(attributes and methods) in cds to the Object class. Afterwards, change all the
declarations of object identifiers to type Object and eliminate casts. Finally,
eliminate method calls and declarations.

The application of this strategy to a ROOL program (cds • c) converges to
the normal form if the program satisfies the following assumptions: cds has no
name clashing for attributes; there is no name clashing for methods in cds, except
in the case of redefinitions; all references to an attribute a are of the form self .a;
recursion in method declarations is expressed in terms of the rec operator; and,
finally, the class Object is explicitly declared by the program in reduction. None
of these assumptions diminish the expression power of the language, and can be
satisfied by simple syntactical transformations.

The first two conditions are necessary to ensure that the laws to move at-
tributes and methods up in the hierarchy are always applicable. The third con-
dition allows a uniform treatment of attribute occurrences. Finally, the fourth
allows that the elimination of method calls to be achieved by a law similar to
the copy rule, since, strictly, the methods are not recursive; although their body
might be a recursive command described using rec.

197

5th Workshop on Formal Methods

The above strategy is based on algebraic laws. In the next section, we will
show the general steps that compose our reduction process.

4 The Reduction Strategy

All rules necessary for the reduction strategy are fully described in [4], where
we can find conditions for their left-to-right and right-to-left use, as well as the
proof that any ROOL program, satisfying the conditions stated in Section 3, can
be reduced to the normal form.

In this subsection, we are going to give a simple example of how the strategy
can be used to simplify a ROOL program. So we are only going to consider the
application of the rules in the direction used in our tool. With that simplification,
we aim at facilitating their understanding.

We are going to use the following example program (we name it PRG):

class Object end

class Account

pri number : String ; prot saldo : double ;

meth credit = val valor : double .

self.saldo := self.saldo + valor end

meth withdraw = val valor : double .

self.saldo := self.saldo - valor end

meth Const = val n : String .

self.number := n; self.saldo := 0 end

end

class Special_Account extends Account

pri points : double ;

meth credit = val valor : double .

self.points := self.points + 1; super.credit(valor) end

end

. var conta1 : Account .

conta1 := new Account ("21.342-7");

conta1.credit (500.00); conta1.withdraw (45.00);

end

This represents a simple bank account with the operations of credit and debit
and a special account that gives one point for each deposit made in the account.

Make Attributes Public The first step of our strategy is to change the
visibility of the attributes of the classes from protected and private to public
ones. This is specified by the following algebraic rule which used the notation
cds1 =cds,c cds2 corresponding to the equivalence of sets of class declarations
cds1 and cds2, where cds is the context ’auxiliary’ declarations for cds1 and
cds2, and c is the main program.

198

5th Workshop on Formal Methods

Law <change visibility of the attributes>

class C extends D class C extends D

prot a : T ; =cds,c pub a : T;

pri a1 : T1; pub a1 : T1;

pub a2 : T2; ads pub a2 : T2; ads

ops ops

end end

So, the classes of our simple program could be rewritten to:

class Object end

class Account

pub number : String ; saldo : double ;

...

end

class Special_Account extends Account

pub points : double ;

...

end

Move Attributes Up After changing the visibility of the attributes to public,

we can easily move them up through the class hierarchy tree until Object.

class Object

pub number : String ; pub saldo, points : double ;

end

class Account

meth credit = val valor : double .

self.saldo := self.saldo + valor end

...

end class Special_Account extends Account

meth credit = val valor : double .

self.points := self.points + 1; super.credit(valor) end

end

Eliminating Super To move safely the methods of the classes to Object we

should make sure that their bodies do not contain super. To eliminate such calls,

we can replace them by a copy of the method’s body declared in the superclass,

unless it contains super or any private attributes.

However, notice that a method called via super is not always declared in the

immediate superclass of the class where the call appears. In order to cope with

this problem, we must first complete the declarations of the classes with trivial

methods redefinitions. Special Account would be rewritten to the following

class after the completing process:

199

5th Workshop on Formal Methods

class Special_Account extends Account

meth credit = val valor : double .

self.points := self.points + 1; super.credit(valor) end

meth withdraw = val valor : double .

super.withdraw(valor) end

meth Const = val n : String .

super.Const(n) end

end

Finally, eliminating the method calls via super in the same class:

class Special_Account extends Account

meth credit = val valor : double .

self.points := self.points + 1;

self.saldo := self.saldo + valor end

meth withdraw = val valor : double .

self.saldo := self.saldo - valor end

meth Const = val n : String .

self.number := n; self.saldo := 0 end

end

Move Methods Up Now we can move up the methods in the same way that

we have made with the attributes. In case of a redefinition, we merge the two

method declarations into a single one in the superclass, and if it is an original

method, we can safely move it up. Object is rewritten to:

class Object

pub number : String ; saldo, points : double ;

meth credit = val valor : double .

if (self is Account) and not(self is Special_Account) ->

self.saldo := self.saldo + valor

[] (self is Special_Account) ->

self.points := self.points + 1;

self.saldo := self.saldo + valor

fi end

meth withdraw = val valor : double .

self .saldo := self.saldo - valor end

meth Const = val n : String .

self.number := n; self.saldo := 0 end

end

Cast Introduction Before we change the types of the identifiers to Object, we

must introduce trivial casts in the expressions. The reason for this is to avoid

the introduction of compilations errors in a valid ROOL program. For example,

let a be a variable of the type C, and x a method only defined in the same

class C. If we change the type of a to Object, all method calls a.x will lead to

200

5th Workshop on Formal Methods

a compilation error introduced by the strategy. The solution to this problem is

the introduction of trivial casts in all expressions, for example, (C) a.x. So, in

our example program, Object and the main command will be rewritten to:

class Object

pub number : String ; saldo, points : double ;

meth credit = val valor : double .

if (self is Account) and not(self is Special_Account) ->

self.saldo := ((Object) self).saldo + valor

[] (self is Special_Account) ->

self.points := ((Object) self).points + 1;

self.saldo := ((Object) self).saldo + valor

fi end

meth withdraw = val valor : double .

self.saldo := ((Object) self).saldo - valor end

meth Const = val n : String .

self.number := (String) n;

self.saldo := 0 end

end

. var conta1 : Account .

conta1 := new Account ("21.342-7");

((Account) conta1).credit (500.00);

((Account) conta1).withdraw (45.00);

end

Change Type to Object As all expressions have a cast, introduced by the user

or by the strategy itself, we can change the types of the identifiers to Object.

class Object

pub number : String ; saldo, points : double ;

...

meth Const = val n : Object .

self.number := (String) n; self.saldo := 0 end

end

.var conta1 : Object .

conta1 := new Account ("21.342-7");

...

end

Cast Elimination We can, at this moment, start the elimination of all casts of

our example program. For such, we rewrite casts as assertion commands, which

can be defined as conditions that is checked at a given point in the program

text. When an assertion {b} is executed, if b holds, nothing happens; otherwise

the program aborts.

201

5th Workshop on Formal Methods

Such rewrite is necessary because of the dynamic behaviour of the cast, which

works as abort when the expression under its guard does not have the specified

type, and skip otherwise.

class Object

pub number : String ; pub saldo, points : double ;

meth credit = val valor : double .

if (self is Account) and not(self is Special_Account) ->

{self is Object};

self.saldo := self.saldo + valor

[] (self is Special_Account) ->

{self is Object};

self.points := self.points + 1;

self.saldo := self.saldo + valor

fi end

meth withdraw = val valor : double .

{self is Object};

self.saldo := self.saldo - valor end

meth Const = val n : Object .

{self is Object}; {n is String};

self.number := n; self.saldo := 0 end

end

.var conta1 : Object .

conta1 := new Account ("21.342-7");

{ conta1 is Account };

conta1.credit (500.00);

{ conta1 is Account };

conta1.withdraw (45.00);

end

Method Elimination The last step of our strategy is to fully eliminate the

methods of Object. This is done by a copy rule that substitutes all method calls

with its respective body, which has already dealt with dynamic bind when we

moved the methods to Object. Afterwards we can eliminate the method definition

as it is no long necessary. So, the normal form of our example program PRG is:

class Object

pub number : String ; saldo, points : double ;

end

class Account end

class Special_Account extends Account end

.var conta1 : Object .

conta1 := new Account ;

conta1 := (val n : Object .

{conta1 is Object}; {n is String};

conta1.number := n; conta1.saldo := 0)("21.342-7");

202

5th Workshop on Formal Methods

{conta1 is Account };

(val valor : double ; .

if (conta1 is Account) and not(conta1 is Special_Account) ->

{conta1 is Object}; conta1.saldo := conta1.saldo + valor

[] (conta1 is Special_Account) ->

{conta1 is Object}; conta1.points := conta1.points + 1;

conta1.saldo := conta1.saldo + valor fi) (500.00);

{ conta1 is Account };

(val valor : double ; . {conta1 is Object};

conta1.saldo := conta1.saldo - valor) (45.00);

end

With the application of these steps, we can simplify any ROOL program
that satisfies the provisos stated earlier on this section. More details about the
reduction strategy can be found in [4].

5 A Reduction Tool

One of the major problems with our strategy is the fact that it can lead to a
great number of steps to reduce a single program to normal form. In [13], we
have an example where a more complex program is fully reduced according to
the strategy. Besides, during the reduction process, a great number of rules can
be fired at the same moment, and choosing which one of them must be applied
ahead of the others is a crucial task. Therefore, we decided to make an automated
tool that releases the users from the tiresome task of making the reduction by
hand and optimizes the process as far as possible.

Our first challenge was to decide in which platform to develop our tool. First
we selected some criteria: rewriting adaptability, facilities to build an incremental
specification, full documentation for the end user, a simple reduction mechanism,
and the possibility of defining different reduction strategies. According to the
chosen criteria, Maude [8] was selected as our development platform. More details
about the choice of the platform can be found in [13].

As mentioned in [8], Maude is a high-performance language and system, sup-
porting both the equational and rewriting logic. It was influenced by OBJ3 [10] in
many features and has a much better performance; it also supports a richer equa-
tional logic, namely, membership equational logic, that extends OBJ3’s order-
sorted equational logic.

In Maude, we can build two kinds of modules: the functional modules, which
define data types and functions on them, by means of the membership equa-
tional logic whose equations are Church-Rosser and terminating, and the system
modules, which are based on the rewriting rules. The rewrite rules need not be
terminating, and need not be Church-Rosser. In our tool, we use both of them.

Defined the platform, we started to tackle our main objective. We initiated
by constructing the specification of the abstract syntax of ROOL. For that we
implemented seven functional modules which are shown in Fig. 1.

203

5th Workshop on Formal Methods

RoolDataType

RoolExpressionsRoolLeftExpressions RoolPredicates

RoolCommandsRoolPCommandsRoolPrograms

Maude:

MachineInt

Maude:

QID

Fig. 1. Modules that implement the specification of ROOL in Maude.

ROOLDATATYPE specifies the data types of the language: the basic ones

and the names of the classes. In our tool, all class names, with the exception

of Object, is preceded by the prefix CLID. So CLID Account is a valid class

identifier. Such abstraction was used so that we could distinguish the function

of the identifier by the prefix. See table 1 for the prefixes used in our tool.

Table 1. Prefix used in our tool for distinguishing the function of the identifiers

Constructor Used Prefix Example

Attribute, parameter and variables - ‘a , ‘b, ‘temp account

Class Name CLID CLID ‘Account, CLID ‘Savings

Method Name MtID MtID ‘debit MtID ‘credit

Command Name CID CID ‘factorial, CID ‘Fib

ROOLLEFTEXPRESSIONS represents the left expressions of ROOL: the

subset of the expressions which can appear at the left side of an assignment and

as target of method calls. In addition, ROOLEXPRESSIONS and ROOLPRED-

ICATES specify the others expressions and the predicates of ROOL, respectively.

The predicates of our language can be any formula of the predicate calculus.

The imperative constructors of ROOL are defined in the modules ROOL-

COMMANDS and ROOLPCOMMANDS. The last one builds the parameterized

commands. The module ROOLPROGRAMS specifies the object-oriented class

constructors of ROOL, as well as the definition of a program in our language.

204

5th Workshop on Formal Methods

With these seven modules, we can describe any ROOL program in our tool.
For example, the program used in Section 4 can be expressed in our tool as the
following specification:

class Object nullAtribute nullMethod end

class CLID ’Account

pri ’number : str :: saldo : double;

meth MtID ’Const ^= val ’n : String .#

self.’numero := ’n ; self.’saldo := 0 # end

meth MtID ’credit ^= val ’valor : double ; .#

self.’saldo := Sum < self.’saldo :: ’valor > # end

meth MtID ’withdraw ^= val ’valor : double ; .#

self.’saldo := Sum < self.’saldo :: Minus < ’valor > > #

end

end

class CLID ’Special_Account extends CLID ’Account

pri ’points : double ;

meth MtID ’credit ^= val ’valor : double ; .#

self.’points := Sum< self.’poits :: 1 > ;

super.MtID ’credit < ’valor > end

end

.main< var ’conta1 :: Lnull : CLID ’Account .

’conta1 := new CLID ’Account ;

’conta1 . MtID ’Const < "21.342-7" > ;

’conta1 . MtID ’credit < 500.00 > ;

’conta1 . MtID ’withdraw < 45.00 > ;

end

>

There are few differences between the actual ROOL concrete syntax and and
our abstract syntax, specified in Maude. The absence of attributes or methods
must be explicitly declared by the keywords nullAtribute and nullMethod. The
main command is separated from the class declarations by .main<. . .>, as in C.
We made this change to improve the visualization of the main command. Other
crucial matter is the fact that the tool does not give any special treatment for
the constructor of a class. It is considered a mere method as the others, and it
is up to the user to call it at the appropriate time.

As for the rules, we specified them in one system module - ROOLRULES.
The main guideline in their implementation was full automation. So, we control
the rules’ order of fire by functions on their conditions. As an example, the first
step of the strategy, which specifies the change in visibility of the attributes, is
implemented as follows:

ceq class B attr1 meth1 end =
class B (TransPub(attr1)) meth1 end

if not allPub(attr1) .

205

5th Workshop on Formal Methods

ceq class B extends C attr1 meth1 end =
class B extends C (TransPub(attr1)) meth1 end

if not allPub(attr1) .

The function TransPub is responsible for the transformation of the private and
protected attributes to public ones, while allPub returns true if all attributes
are public, and false otherwise.

Specifically, we implement this step as equations and not as a rewrite rules.
This is due to the greater efficiency, in Maude, of the reduction mechanism. As
for the order of firing, Maude guarantees that the equations are evaluated before
the rewriting rules, which gives us the right order of firing.

Not all rules, however, can be specified in this style. Some of them have to be
written as pure functions, due to the great amount of instances that we would
have to write to guarantee the full automation. For example, as expressions can
appear everywhere in a ROOL program, we would have to write a countless
number of instances of rules to guarantee our main guideline in the step of
introducing trivial casts. Instead, we specified this rule in the form presented
bellow. In [13], we give a detailed explanation of the explosion of rules.

crl [law-simplify-exp] : cds1 .main< c > =>

simplifyExpPRG((cds1 .main< c >))

if not isAllSimpleExp((cds1 .main< c >))
and noMethod(cds1) .

The function isAllSimpleExp receives a program and checks if all expressions
in it are simple; noMethod verifies if all code in the classes (attributes and
methods) are only defined in Object. So they represent the stop point and the
precondition of the rule.

The function simplifyExpPRG receives a ROOL program and reduces its
complex expressions to a simple form. Below we can see how simplifyExpCOM ,
which is analogous to simplifyExpPRG, deals with the simplification of a
method call:

ceq simplifyExpCOM(le . x < expL > , prog) = le . x < expL >

if isSimple(expL) and isSimple(le) .

ceq simplifyExpCOM(le . x < expL > , prog) =
var createV ars(le , prog , 1) .

createAtribs(le , prog , 1) ;
createListV ars(le , prog , 1) . x < expL >

end

if not isSimle(le) .

ceq simplifyExpCOM(le . x < expL > , prog) =
var createV ars(expL , prog , 1) .

206

5th Workshop on Formal Methods

createAtribs(expL , prog , 1) ;
le . x < createListV ars(expL , prog , 1) >

end

if not isSimple(expL) and isSimple(le) .

If the left expression le and the expression list expL, which represents the pa-
rameters are already simplified, the function simplifyExpCOM returns them
without changes. Otherwise, it creates a fresh variable using the createV ars

auxiliary function, assigns to it the value of le using createAtribs and rewrites
the method call, changing the left expression le to the variable created before
(function createListV ars). The same procedure is applied in the simplification
of the others expressions. With only this rule, we can simplify all expressions in
a ROOL program. The complete specification of our tool can be found in [13].

Another key issue in our implementation is the optimization of the process.
During our design, we developed a “Method Jump” and the local completion
mechanism. These optimizations are used during the step of eliminating method
calls with target super. As described earlier, before we can safely eliminate
this kind of call, we have to complete all class definitions with trivial method
redefinitions using super itself. This is specified as the following rule:

Law <introduce method redefinition>

class B extends A class B extends A

ads ads

meth m = pc end ; ops meth m = pc end ; ops

end = end

class C extends B class C extends B

ads’ ads’

ops’ meth m = super.m end; ops’

end end

Provided - m is not declared in ops’.

The above rule says that we can introduce, in the subclass, trivial redefini-
tions of parents methods via super provided it is not already redefined. The
result of the exhaustive application of this rule in a ROOL program results in
classes that have redefinitions for all parents methods.

With this completion, we can just apply a copy rule that replaces a method
call using super by a copy of the method’s body declared in the superclass,
provided the body does not contain super nor private attributes, which would
not be visible in the subclass.

207

5th Workshop on Formal Methods

Law <eliminate super>

Consider that CDS is a set of two class declarations such as the following:
class B extends A

ads

meth m = pc end; ops

end

class C extends D

ads’

ops’

end

If super and the private attributes in ads do not appear in pc, we have
cds CDS , C △ super . m = pc

The notation cds CDS , C △ super.m = pc indicates that super . m = pc holds
inside class C, in a context defined by the set of class declarations cds CDS.

Our optimization is that, instead of inserting redefinitions from Object until
the classes which are the leaves of the hierarchy tree, we just get the body of
the method in the nearest superclass that has a suitable definition for it. In this
way, we eliminate a series of definitions that would never be used.

Another problem arises when we use such optimization: in the body of the
method we can have method calls of the kind self.m , where m is defined only in
the superclass. The solution to this is the local completion method. We complete
classes with trivial redefinitions of methods if it already has a method call with
super. With these optimizations, the method jump and the local completion
method, we improved the efficiency of our tool in 15

The complete tool is implemented with a total of 70 rules and is fully auto-
mated. In [13] one can find not only the complete specification, but a case study,
where we demonstrate its convergency, and a the reduction of a more complex
program being reduced by it.

6 Conclusions and Future Work

Our main contribution is an operational proof that the reduction strategy spec-
ified in [4] is feasible for automation and the defined set of rules is relatively
complete. Our tool can, in fact, reduce ROOL programs that satisfy the provi-
sos mentioned in Section 3 of this paper.

The use of Maude has shown to be invaluable for our work. We had no
great problems to give an abstract syntax specification for ROOL as well as to
specify and use the laws for reducing programs. In fact, all laws were literaly
translated to rewrite rules in the system module of Maude and we used the
default rewrite/reduce engine of the system. This work is also a contribution to
the Maude community as it proves a good case study of program transformation
in the refered theorem prover.

Although our implementation is a specific tool, it will serve as the basis for
the implementation of a more general one that will help in the justification of

208

5th Workshop on Formal Methods

widespread object-oriented programming techniques. In that new tool, we will
use the laws for other tasks of program transformation such as refactoring and
compilation [7].

Another topic for the future is the extension of the reduction strategy for the
imperative subset of ROOL. We will also consider the proposition of rules for a
language based on a reference semantics instead of a copy one.

References

1. Borba, P.: Where are the laws of object-oriented programming? In: I Brasilian Work-
shop on Formal Methods, pages 59-70, Porto Alegre Brasil (1998)

2. Borba, P. and Sampaio, A.: Regras de Comando de ROOL (draft)
3. Borba, P. and Sampaio, A.: Basic Laws of ROOL: an Object-Oriented Language.

In: 3rd Brazilian Workshop of Formal Methods. (2000) 33-44
4. Borba, P. and Sampaio, A.: A Normal Form Reduction Strategy for ROOL: an

Object-Oriented Language. In: Technical Report, Centro de Informática, UFPE,
(2002)

5. Cavalcanti, A.L.C. and Naumann, D.: A Weakest Precondition Semantics for an

Object-oriented Language of Refinement. In: Jeannette M. Wing, Jim Woodcock
and Jim Davies, editors, FM’99 - Formal Methods, LNCS, 1709:1439-1459. Springer-
Verlag, (1999)

6. Cavalcanti, A.L.C. and Naumann, D.: A Weakest Precondition Semantics for refine-

ment of object-oriented programs. In: IEEE Transactions on Software Engineering,
26(8): 713 - 728, (2000)

7. Duran, Adolfo and Sampaio, Augusto and Cavalcanti, Ana.: Formal Bytecode Gener-

ation for a ROOL Virtual Machine. In: 4th Brazilian Workshop of Formal Methods,
2001. Revista de Informtica Terica e Aplicada, 7(1): 49-68, 2000.

8. Clavel, M. and Durán, F. et al.: Maude: Specification and Programming in Rewriting

Logic. In: Computer Science Laboratory - SRI International, (1999)
9. Conelio, M. and Cavalcanti, A.L.C.: Proving the basic laws of ROOL in a weakest

precondition semantics. In: Technical Report, Centro de Informática, UFPE, 2000
10. Goguen, J. Winkler, T. et al.: Introducing OBJ. In: Technical Report SRI-CSL-92-

03, SRI International, Computer Science Laboratory, (1992)
11. Gosling, J.; Joy, B. and Steele, G.: The Java Language Specification. In: Addison-

Wesley (1996)
12. Hoare, C. A. R. et al.: Laws of Programming. In: Communications of the ACM, 30

(8): 672-686, (1987)
13. Lira, Bruno: Automatização de uma estratégia de redução a forma normal para

programas orientados a objetos. In: MSc Thesis - to appear.
14. Morgan, C.: Programming from Specifications. In: Prentice Hall, second edition

(1994)
15. Oheimb,D. and Nipkow, T.: Machine-checking the Java specification: Proving Type-

Safety. Chapter of Springer LNCS Vol. 1523: Formal Syntax and Semantics of Java,
1999

16. Roscoe, A. and Hoare, C.A.R.: The laws of occam programming. In: Theoretical
Computer Science, 60:177-229 (1988)

17. Sampaio, A.: An Algebraic Approach to Compiler Design Volume 4 of Algebraic

Methodology and Software Technology. World Scientific, (1997)
18. Syme, D.: Proving Java Type Soundness. University of Cambridge Computer Lab-

oratory Technical Report 427, (1997)

