

Debugging Scientific Workflows with Provenance:
Achievements and Lessons Learned

Daniel de Oliveira1, Flavio Costa2, Vítor Silva2, Kary Ocaña2 and Marta Mattoso2
1Institute of Computing – Fluminense Federal University (IC/UFF)

2COPPE – Federal University of Rio de Janeiro (UFRJ)
danielcmo@ic.uff.br, {flscosta, silva, kary, marta}@cos.ufrj.br

Abstract.1Scientific Workflow Management Systems manage experiments in
large-scale and deliver provenance data. Provenance data represents the
workflow execution behavior, allowing for tracing the data-flow generation.
When provenance is extended with performance execution data, it becomes an
important asset to identify and analyze errors that occurred during the
workflow execution (i.e. debugging). Debugging is essential for workflows that
execute in parallel in large-scale distributed environments since the incidence
of errors in this type of execution is high and difficult to track. By debugging
at runtime, scientists can identify errors and take the necessary actions, while
the workflow is still running. We present provenance based debugging, in real
use cases, running in parallel, with virtual machines in clouds. In these
experiences scientists use provenance data to query domain and execution
data to detect errors, especially when the execution concludes without any
system error message.

1. Introduction
Many scientific experiments are modeled as scientific workflows to represent the flow
of data, transformed by programs, each of which consumes a set of parameters and input
data. Scientific workflows are managed by powerful engines in Scientific Workflow
Management Systems (SWfMS), such as Pegasus (Lee et al. 2008), Swift/Turbine
(Wozniak et al. 2012), Tavaxy (Abouelhoda et al. 2012) and SciCumulus (Oliveira et
al. 2010), which have parallel execution support. SWfMS are used in domains, such as,
engineering, bioinformatics and astronomy (Hey et al. 2009). Furthermore, several
scientific workflows execute in large scale, since they process large amounts of data
(Pennisi 2011) requiring parallel execution in High Performance Computing (HPC)
environments, such as clusters, grids, and more recently, clouds. These SWfMS also
provide provenance capabilities to record the historical information about the workflow
execution behavior (Freire et al. 2008) to help workflow analysis, reproducibility and
validation. Although several SWfMS provide sophisticated mechanisms for executing
large-scale scientific workflows in distributed HPC environments, most of them execute
the workflow in an “offline” way (Ailamaki et al. 2010), i.e. as a black-box. Online
monitoring and debugging may save significant amounts of workflow execution time,
when unexpected behavior can be detected way before the end of workflow execution.
When debugging can analyze the relation between execution data, workflow data and

1 This work is partially sponsored by CNPq and FAPERJ.

29th SBBD – SBBD Proceedings – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

paper:7

67

domain data, scientists have a much clear picture of the experiment dataflow (Mattoso
et al. 2013). When this analysis is done at runtime, significant time may be saved.
 We consider here three types of unexpected execution behavior, one is related to
execution performance, the second is aware of the workflow stage of execution and the
third is related to data-flow generation, including domain data analysis (Gonçalves et al.
2012). Execution performance may indicate that a task is taking longer than expected. It
also identifies failures from node, task or program crashes, among others. Workflow
execution may be unexpected when a data is generated and does not produce the
expected result value. In fact, this may prevent the next activity to consume it,
generating an anomaly. For example, the specification of a filter value may not be
adequate, generating an excessive or too restrictive data-flow. Since these results would
not cause any failure on the execution, scientists would only realize the filter
configuration problem by the end of the whole workflow execution. By further
analyzing domain data, scientists may evaluate if domain data is not compatible with the
defined filter value. Therefore, data-flow monitoring also helps to improve workflow
performance and should be together with domain data and execution monitoring.

To help workflow execution monitoring and debugging, related work like
Stampede (Gunter et al. 2011) and Panda (Ikeda et al. 2012) support data-oriented
scientific workflow analysis using runtime execution data. These systems are focused
on workflow activities and their corresponding jobs and tasks executions, using
performance analyzers, such as, NetLogger to associate execution behavior to activities.
They represent performance metrics and file generations in a relational database so that
users can query and identify execution failures in scientific workflows, at runtime, even
when the workflow execution does not crash. Stampede has a visual interface where
execution behavior may be visualized and analyzed with R package (Vahi et al. 2013).

Nevertheless, these powerful execution performance monitoring and debugging
do not allow for domain data-flow generation debugging. This would require access to
provenance data-flow and some related domain data, also at runtime. When provenance
data and execution monitoring data are in separate databases, it is difficult to relate
execution behavior with the data that caused an unexpected activity execution. For
example, if the user detects that a specific task failed or is taking too long, it might be
helpful to check the inputs and parameters of this task, or in which workflow iteration
this failure occurred. To track this, the user would need first to query the execution
monitoring database to find the instance of the failed task, and then query the domain
data-flow, to manually try to relate them all together, i.e., the execution instance task
with its corresponding input data-flow.
 In another related work, MTCProv (Gadelha et al. 2012) stores performance
execution time in the same database as provenance data and it helps scientists in data-
flow debugging through provenance queries. However, in MTCProv, online monitoring
is not supported, therefore debugging queries can only be submitted after the workflow
finishes its execution. Unexpected data-flow might not generate a failure occurrence,
however it would still represent an anomalous execution requiring aborting the
execution as soon as possible. Waiting until the end to debug, considering performance
and data-flow, change the workflow specification and resubmitting it takes too long.
 Differently from the current mainstream, Chiron (Ogasawara et al. 2011) and its
extension to cloud environments, SciCumulus, are the only SWfMS that support

29th SBBD – SBBD Proceedings – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

68

debugging based on execution performance and domain data-flow generation. They
obtain that by integrating all these data at their provenance database, available for
traversal analysis at runtime. In this paper we go deep into specific details of the data-
flow algebraic approach (Ogasawara et al. 2011), adopted in both Chiron and
SciCumulus, to show the potential of data analysis in real applications. Therefore, this
paper presents our achievements and lessons learned from users exploring the runtime
provenance support of SciCumulus in debugging real large-scale bioinformatics
workflows (Ocaña et al. 2011, Ocaña et al. 2014).
 This paper is organized as follows: Section 2 explains the importance of
provenance in scientific workflow monitoring and debugging; Section 3 describes case
of studies for workflow debugging at runtime using SciCumulus; and finally, Section 4
presents our conclusions and future research directions.

2. Data-flow Runtime Analysis
The workflow data centric algebraic approach (Ogasawara et al. 2011), that drives the
execution engine of both Chiron and SciCumulus, uses relations to store the workflow
specification as a prospective provenance and the workflow execution as a retrospective
provenance, all in the same database. In other words, prospective provenance presents a
workflow composition (such as activities and your dependencies), while retrospective
provenance determines properties about workflow execution (such as the directory to
execute workflow or database hostname) (Freire et al. 2008). This algebraic approach
introduces a set of operators to the relational algebra (Map, Reduce, Filter, SplitMap,
MRQuery and SRQuery), which considers both workflow activities and data-flow as
operands. Each activity of the workflow is associated to an operator, which has operand
relations as input and all results of this activity execution are stored at an output
relation, which can be the input operand relation to the operator associated to the next
workflow activity.
 To present the potential of monitoring and debugging, we show the algebraic
view of two real workflows from the bioinformatics domain using SciCumulus. One is
SciPhy, for phylogeny analyses (Ocaña et al. 2011) and the other is SciDock for
molecular docking analyses (Ocaña et al. 2014). SciPhy and SciDock are complex
workflows composed by several data and computing-intensive activities that may last
for days, weeks or even months, to generate results. We simplify them here and show
the algebraic relations only for the most representative activities (programs) for both
workflows: RAxML for SciPhy and autodock for SciDock.
 SciPhy, partially represented in Figure 1, is modeled as two algebraic
expressions: Rm ← Map(RAxML, Ri); Ro ← Reduce(TreeView, “model”, Rm). RAxML
is followed by the phylogenetic analysis activity TreeView. Workflow parameters from
the Command line are now attributes of input relation Ri and their values are inserted in
Ri tuples (Figure 1.a). RAxML is executed n times with different input data for three
parameters (i.e. the last attributes in Ri) generating n resulting tuples in the output
relation Rm. Each tuple of Rm is related to the consumption of each Ri tuple (Figure 1.b).
Attribute k relates Ri with Rm. TreeView executes a computational simulation by
grouping Rm tuples by model (Reduce) into output relation Ro to obtain a phylogenetic
tree and for analyzing/visualizing the quality of the tree (Figure 1.c).

29th SBBD – SBBD Proceedings – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

69

 Scientists may query Rm at runtime, while the output tuples are still being
generated. For example, a query may retrieve tuples with attributes Result = true and
model = GTR, which were generated from a runtime calculated average bootstrap
attribute value in Ri that are above a threshold. This would indicate an issue in the
obtained model that will influence the topology of the trees. In another example, based
on data-flow analysis, scientists decide that they are only interested on result models
that generate trees where bootstrap quality-bp (AVG) > 90, and they may submit
relational queries to Ro to filter out unwanted results for the next steps. Estimating
adequate thresholds or filters before evaluating the data-flow is complex and
anticipating the "right" value might not be possible.

Figure 1. Reduced algebraic workflow representation of SciPhy

 SciDock is a workflow for molecular docking that attempts to mimic the process
of bringing together a protein and a ligand to form a non-covalent complex and to reveal
the electrostatic and steric complementarity between the protein and the ligand. Figure 2
shows the most representative activities of SciDock (autodock4) and the following
docking analysis (Vina). Vina executes a computational simulation for analyzing/
visualizing the quality of the molecular docking for the receptor-ligand pairs (True, if it
exists/False, otherwise), reinforcing the biological inferences attributed to each obtained
molecular docking and statistical results. The algebraic workflow would be:
Rx ← Map (autodock4, Re); Rs ← Map (Vina, Rx) ; represented by Figure 2.a and Figure
2.b.

–file%ENZ)01.phylip%–md%GTR%–bp%100%#%./RAxML%

Rm# Map(#raxml,#Ri#)#

k% file% model% bootstrap%

1' ENZ+01.phylip' GTR' 100'

2' ENZ+02.phylip' BLOSUM62' 100'
…'

n# ENZ+100.phylip' RtREV' 100'

Command#line:#

Ri#

raxml'

TreeView'

k% model% quality)bp%(AVG)% resultree%

1' GTR' 80' ENZ+01.raxml.tree'

2' BLOSUM62' 50' ENZ+02.raxml.tree'
…'

g# RtREV' 100' ENZ+100.raxml.tree'

k% model% result% file%

1' GTR' True' raxml+bp+01'

2' BLOSUM62' True' raxml+bp+02'
…'

n# RtREV' True' raxml+bp+100'

Rm#

Ro#

Ro# Reduce(#TreeView,#“model”,#Ri#)#

(a)%

(b)%

(c)%

29th SBBD – SBBD Proceedings – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

70

Figure 2. Reduced algebraic workflow representation of SciDock

 Scientists may query Rx data-flow at runtime and check if it presents negative
average FEB values and RMSD > 4 for any tuple. This would indicate an issue with the
obtained ligand/receptor biophysical characteristics that will influence the existence (or
not) of the docking process, depending on some the quality values (i.e., FEB, RMSD).

3. Debugging Bioinformatics Workflows Using Execution and Domain Data
During SciPhy and SciDock executions, SciCumulus provenance database was queried
to detect possible unexpected situations from workflow executions. We discuss here
queries related to performance execution time and data-flow generation for detecting
domain-specific problems that would not be identified using monitoring and debugging
mechanisms based only on performance execution data.
 Domain-data relations with parameters consumed and produced by activities
(i.e. Ri and Rm) are stored in the same provenance database that has execution data and
typical workflow data. The workflow algebraic approach fostered this provenance data
integration. Our provenance relations follow the PROV-Wf model (Costa et al. 2013),
an extension of the W3C PROV standard (Groth and Moreau 2013). Using PROV-Wf,
scientists are able to query performance execution time, domain and data-flow from
workflow execution, as soon as they are generated, at runtime. PROV-Wf is composed
by a set of classes (each one has an associated relation at the provenance database) to
represent workflow concepts. In Figure 3 we show some of them, used in our queries:
hworkflow, hactivity for prospective provenance and hactivation, relation, hfile, and
hkeyspace for retrospective provenance. The instance of one hactivity of an hworkflow
execution is represented as a tuple in hactivation through attribute actid. Table relation
has its name and attributes defined by the user to store domain data values for input
parameters that are consumed by an activity execution, like Ri is input to RAxML, and
hfile provides access from activities to domain files, like ENZ-01.phylip in Ri and
raxml-bp-01 in Rm.

–p#042_1AEC.dpf#–l#042_1AEC.dlg###./autodock4##

Rx# Map(#autodock4#,#Re#)#

k# file#;#receptor# file#;#ligand# #run#

1* 042_1AEC.dpf* 042_1AEC.dlg* 5*

2* 042_1AIM.dpf* 042_1AIM.dlg* 5*
…*

n# 074_1ATK.dpf* 074_1ATK.dlg* 5*

Command#line:#

Re#

autodock4*

Vina*

k# ligand# docking# resultdocking#

1* 042* True* 042_1AEC_AD4.dlg*

2* 042* True* 042_1AIM_AD4.dlg*
…*

n# 074* True* 074_1ATK_AD4.dlg*

k# receptor# ligand# RMS
D#

FEB#

1* Na* 042* 10.3* E4.9*

2* Hg* 042* 9.1* E5.9*
…*

n# Cd* 074* 9.7* E8.4*

Rx#

Rs#

Rs# Map(#Vina#,#“ligand”,#Rx#)#

(a)#

(b)#

29th SBBD – SBBD Proceedings – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

71

Figure 3. Simplified view of PROV-Wf classes, adapted from (Costa et al. 2013)

 All experiments presented in this section were performed in the Amazon EC2
cloud environment using 32 Amazon’s large VMs (EC2 ID: m1.large – 7.5 GB RAM,
850 GB storage, 2 cores). Provenance data is managed using PostgreSQL database
system, stored at Amazon S3. The execution of SciPhy generated 1,000 activations for
200 input files. SciDock generated 1,798 activations for 200 input multi-fasta files. This
means that for each execution of SciPhy 1 row is inserted in hworkflow table, 5 in
hactivity, 1,000 in hactivation, 1,000 in relation, 1,000 in hkeyspace and 5,315 in hfile.
In the case of SciDock, for each execution consuming 200 input data, 1 row is inserted
in hworkflow, 9 in hactivity, 1,798 in hactivity, 1,798 in hrelation, 1,798 in hkeyspace
and 10,380 rows in hfile. In total, the provenance database contains the following
amount of rows per table: hworkflow: 757, hactivity: 3265, hactivation: 67,039, hfile:
272,218, relation: 67,035, and hkeyspace: 67,035. The following selected queries were
considered in our analysis to represent three types of the most frequent queries:
execution, data-flow and monitoring queries. In this case, our monitoring query aims to
identify activity executions with errors.
Query 1 (Q1) – Execution time. SciPhy workflow is executed 1,000 times, varying a
large number of parameters or data input. Errors can be identified at runtime, when
scientists are monitoring and tracing one specific task. Using task execution time
information, from historic provenance, users are able to identify performance variations
that may indicate execution outliers. If one task is consuming more time to execute than
expected (e.g. more than average execution time), there is an indication of alert.
Scientists have to investigate if this performance variation is an error. Related data files
are identified through provenance queries and then analyzed. In SciPhy, queries may
check: the number of sequences in the input fasta file (i.e., if there are less than three or
more than 100 fasta sequences); if the format (for amino acid sequences) is recognized;
or if the default number for bootstrap replication is 100. When scientists are able to

29th SBBD – SBBD Proceedings – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

72

analyze performance metrics with domain-specific data, they can evaluate if the
execution is likely to be correct or not. This execution time debugging with domain data
saved 15% of time, since waiting until the end of the execution would require additional
3.1 hours (Ocaña et al. 2011).
Q1: SELECT w.tag, a.tag, t.taskid, t.exitstatus, t.processor, t.workspace, t.status, t.endtime, t.starttime,

extract ('epoch' from (t.endtime-t.starttime))||',' as duration, r.file, r.bootstrap
FROM hworkflow w, hactivity a, hactivation t, hkeyspace k, relation r
WHERE w.wkfid = a.wkfid AND a.actid = t.actid AND t.taskid = k.taskid AND r.ik >= k.iik
AND r.ik <= k.fik
AND w.tag like '%SciPhy%'
AND r.bootstrap <> 100
AND duration > (SELECT avg(extract ('epoch' from (t.endtime-t.starttime))||',')-

2.4*stddev(extract('epoch' from (t.endtime-t.starttime))||',')
FROM hactivation ac WHERE ac.actid=t.actid)

Query 2 (Q2) – Data-flow. In SciDock workflow, approximately 30% of executions
failed. Problems involving environment and workflow specification were checked and
discarded (i.e. any problems related to virtual machines or environment configuration).
Therefore, we concluded that failures were associated with input data (i.e. ligands or
receptor structures). Querying the provenance database, the errors were constantly
traced back to a specific set of ligand structures (i.e. very small ligands), which were not
compatible with receptors of the cysteine protease family. Then, these ligands were
detected and excluded for a posteriori executions. At the end, results were re-verified
with Q2 to confirm that the “.dlg” files (containing the final docking results) were
correctly generated (i.e. as Successful Completion), and consequently, the docking
quality scores (e.g. FEB and RMSD) analyzed by specialists. This data-flow query
saved 30% of time, since waiting the execution end would require another 21.2 hours.
However, even after waiting for the workflow completions, if this direct access to the
set of ligand structures was not available, it would be very difficult to identify that the
anomalous ligands all shared a common property, related to the failures.
Q2: SELECT w.tag, a.tag, f.fname, f.fsize, f.fdir, r.RMSD, r.FEB

FROM hworkflow w, hactivity a, hactivation t, hfile f, hkeyspace k, relation r
WHERE w.wkfid = a.wkfid AND a.actid = t.actid AND f.taskid = t.taskid AND t.taskid = k.taskid
AND r.ik >= k.iik AND r.ik <= k.fik
AND w.tag like '%SciDock%' AND f.fname like '%dlg%' AND t.exitstatus = 0

Query 3 (Q3) Unexpected program errors. By default, programs like AutoDock and
AutoDock Vina do not recognize a set of atoms (e.g., Na, Hg, Ac, Cd, Ce, V, K)
producing the following error message: “Unknown receptor type: ‘Hg’”. The problem is
that users cannot specify a priori which atoms are inside each ligand/receptor structure.
However, in structures of enzyme families, as cysteine protease, used in our
experiments, some receptor structures can contain mercury (Hg). This scenario was
detected by querying the provenance database at runtime. Q3 searches for tasks that
present some failures in the execution (i.e. that produced error messages as outputs) and
whose input data has the atom Hg in its cysteine protease structures. When identifying
these tasks, the Hg molecule was included to be recognized in cysteine protease
receptors. Finally, all executions that failed due to this problem were successfully
identified and re-executed. This data-flow query saved 3% of time, since waiting until
the end of the execution would require 3.9 hours. Again, debugging without provenance
would be even more time consuming.

29th SBBD – SBBD Proceedings – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

73

Q3: SELECT w.wkfid, w.tag
FROM hworkflow w, hactivity a, hactivation t, hkeyspace k, relation r
WHERE w.wkfid = a.wkfid AND a.actid = t.actid AND t.taskid = k.taskid AND r.ik >= k.iik
AND r.ik <= k.fik
AND w.tag like '%SciDock%'
AND a.tag = ‘autogrid4’
AND r.receptor == ‘Hg’
AND (t.terr <> ‘’ OR t.exitstatus <> 0)

 The unexpected behavior detected by queries 1, 2 and 3 could only be identified
by associating performance execution data with provenance data and domain-specific
data. Using relational queries, scientists can check on thousands of executions related to
hundreds of thousands of domain data files. This represents a step forward to scientists
regarding related work. While querying the integrated database at run time, users do not
have to manually find the required data files, download them and analyze each file
individually (without data flow context) to detect failures and debug unexpected
behavior in their workflow execution. Typical queries are also available as simpler
parameterized query templates.

4. Conclusions and Final Remarks
Debugging mechanisms in HPC scientific workflows are essential to support the
exploratory nature of science and the dynamic process involved in scientific analyses.
Large-scale experiments can benefit from debugging features to reduce the incidence of
errors, decrease the total execution time and sometimes reduce the financial cost
involved. In most of the executions, typical HPC profiling tools are too low level, not
aware of workflow resources. The debugging process has to explore the content of input
data, iteratively searching for the identification of what caused the anomalous
execution. Since each workflow execution may consist of hundreds or even thousands
of activities that are executed in parallel, it is unviable to perform a manual monitoring
and debugging on data-flow generation.
 This paper discussed the importance of W3C provenance data enriched with
performance and domain-specific data. Furthermore, real bioinformatics workflow
executions present how to make fine-tuning debugging using the provenance data at
runtime. The actions taken from debugging provenance queries improved the quality of
results and time spent to complete all computations in bioinformatics scenarios. Similar
results were obtained in different domains such as deep water oil exploitation
(Ogasawara et al. 2011), numerical reduced order models (Dias et al. 2011) and text
mining (Dias et al. 2013).
 Data storage and access from thousands workflow executions are also important
issues. When workflow execution and provenance data are in the same database, queries
are simpler to formulate and a lot of data redundancy is avoided. However, access to
this database may become a bottleneck. Using well-known parallel relational database
techniques and new lighter SQL systems may leverage this. This integrated provenance
database only has metadata for one specific execution. When the workflow finishes its
execution, this database may be loaded into a larger provenance warehouse. We believe
that database technology has an unexplored potential to further improve existing
solutions for workflow debugging in parallel large data-flow executions.

29th SBBD – SBBD Proceedings – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

74

References
Abouelhoda, M., Issa, S., Ghanem, M., (2012), "Tavaxy: Integrating Taverna and

Galaxy workflows with cloud computing support", BMC Bioinformatics, v. 13,
p. 77.

Ailamaki, A., Kantere, V., Dash, D., (2010), "Managing scientific data",
Communications of the ACM, v. 53, n. 6 (Jun.), p. 68–78.

Costa, F., Silva, V., de Oliveira, D., Ocaña, K., Ogasawara, E., Dias, J., Mattoso, M.,
(2013), "Capturing and Querying Workflow Runtime Provenance with PROV:
A Practical Approach". In: EDBT/ICDT ’13 Workshops, p. 282–289, New York,
NY, USA.

Dias, J., Ogasawara, E., Oliveira, D., Porto, F., Coutinho, A., Mattoso, M., (2011),
"Supporting Dynamic Parameter Sweep in Adaptive and User-Steered
Workflow". In: 6th WORKS, p. 31–36, Seattle, WA, USA.

Dias, J., Ogasawara, E., de Oliveira, D., Porto, F., Valduriez, P., Mattoso, M., (2013),
"Algebraic dataflows for big data analysis". In: 2013 IEEE International
Conference on Big Data2013 IEEE International Conference on Big Data, p.
150–155

Freire, J., Koop, D., Santos, E., Silva, C. T., (2008), "Provenance for Computational
Tasks: A Survey", Computing in Science and Engineering, v.10, n. 3, p. 11–21.

Gadelha, L. M. R., Wilde, M., Mattoso, M., Foster, I., (2012), "MTCProv: a practical
provenance query framework for many-task scientific computing", Distributed
and Parallel Databases, v. 30, n. 5-6 (Oct.), p. 351–370.

Gonçalves, J. C. A. R., Oliveira, D., Ocaña, K. A. C. S., Ogasawara, E., Mattoso, M.
(2012) "Using Domain-Specific Data to Enhance Scientific Workflow Steering
Queries", In: IPAW 2012, p. 152-167

Gunter, D., Deelman, E., Samak, T., Brooks, C. H., Goode, M., Juve, G., Mehta, G.,
Moraes, P., Silva, F., et al., (2011), "Online workflow management and
performance analysis with Stampede". In: Network and Service Management
(CNSM), 2011 7th International Conference on, p. 1 –10

Hey, T., Tansley, S., Tolle, K., (2009), The Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft Research.

Ikeda, R., Cho, J., Fang, C., Salihoglu, S., Torikai, S., Widom, J., (2012), "Provenance-
Based Debugging and Drill-Down in Data-Oriented Workflows". IEEE 28th
International Conference on Data Engineering (ICDE), p. 1249–1252

Lee, K., Paton, N. W., Sakellariou, R., Deelman, E., Fernandes, A. A. A., Mehta, G.,
(2008), "Adaptive Workflow Processing and Execution in Pegasus". In: 3rd
International Conference on Grid and Pervasive Computing, p. 99–106,
Kunming, China.

Mattoso, M., Ocaña, K., Horta, F., Dias, J., Ogasawara, E., Silva, V., de Oliveira, D.,
Costa, F., Araújo, I., (2013), "User-steering of HPC workflows: state-of-the-art
and future directions". In: 2nd SWEET ACM SIGMOD Workshop, p. 1–6, New
York, NY, USA.

29th SBBD – SBBD Proceedings – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

75

Ocaña, K. A. C. S., Oliveira, D., Ogasawara, E., Dávila, A. M. R., Lima, A. A. B.,
Mattoso, M., (2011), "SciPhy: A Cloud-Based Workflow for Phylogenetic
Analysis of Drug Targets in Protozoan Genomes". In: BSB, p. 66–70, Berlin,
Heidelberg.

Ocaña, K., Benza, S., Oliveira, D., Dias, J., Mattoso, M., (2014), "Exploring Large
Scale Receptor-Ligand Pairs in Molecular Docking Workflows in HPC Clouds".
In: 13th IEEE International Workshop on High Performance Computational
Biology (HiComb 2014), IPDPS, Phoenix, Arizona, USA, p. 536-545.

Ogasawara, E., Dias, J., Oliveira, D., Porto, F., Valduriez, P., Mattoso, M., (2011), "An
Algebraic Approach for Data-Centric Scientific Workflows", PVLDB
Endowment, v. 4, n. 12, p. 1328–1339.

Oliveira, D., Ocaña, K. A. C. S., Ogasawara, E., Dias, J., Gonçalves, J., Baião, F.,
Mattoso, M., (2013), "Performance evaluation of parallel strategies in public
clouds: A study with phylogenomic workflows", Future Generation Computer
Systems, v. 29, n. 7 (Sep.), p. 1816–1825.

Oliveira, D., Ogasawara, E., Baião, F., Mattoso, M., (2010), "SciCumulus: A
Lightweight Cloud Middleware to Explore Many Task Computing Paradigm in
Scientific Workflows". In: 3rd International Conference on Cloud Computing,
p. 378–385, Washington, DC, USA.

Pennisi, E., (2011), "Will Computers Crash Genomics?", Science, v. 331, n. 6018
(Feb.), p. 666–668.

Vahi, K., Harvey, I., Samak, T., Gunter, D., Evans, K., Rogers, D., Taylor, I., Goode,
M., Silva, F., et al., (2013), "A Case Study into Using Common Real-Time
Workflow Monitoring Infrastructure for Scientific Workflows", Journal of Grid
Computing, v. 11, n. 3 (Sep.), p. 381–406.

Wozniak, J. M., Armstrong, T. G., Maheshwari, K., Lusk, E. L., Katz, D. S., Wilde, M.,
Foster, I. T., (2012), "Turbine: a distributed-memory dataflow engine for
extreme-scale many-task applications", p. 1–12

29th SBBD – SBBD Proceedings – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

76

