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Abstract.1Scientific Workflow Management Systems manage experiments in 
large-scale and deliver provenance data. Provenance data represents the 
workflow execution behavior, allowing for tracing the data-flow generation. 
When provenance is extended with performance execution data, it becomes an 
important asset to identify and analyze errors that occurred during the 
workflow execution (i.e. debugging). Debugging is essential for workflows that 
execute in parallel in large-scale distributed environments since the incidence 
of errors in this type of execution is high and difficult to track. By debugging 
at runtime, scientists can identify errors and take the necessary actions, while 
the workflow is still running. We present provenance based debugging, in real 
use cases, running in parallel, with virtual machines in clouds. In these 
experiences scientists use provenance data to query domain and execution 
data to detect errors, especially when the execution concludes without any 
system error message. 

1. Introduction 
Many scientific experiments are modeled as scientific workflows to represent the flow 
of data, transformed by programs, each of which consumes a set of parameters and input 
data. Scientific workflows are managed by powerful engines in Scientific Workflow 
Management Systems (SWfMS), such as Pegasus (Lee et al. 2008), Swift/Turbine 
(Wozniak et al. 2012), Tavaxy (Abouelhoda et al. 2012) and SciCumulus (Oliveira et 
al. 2010), which have parallel execution support. SWfMS are used in domains, such as, 
engineering, bioinformatics and astronomy (Hey et al. 2009). Furthermore, several 
scientific workflows execute in large scale, since they process large amounts of data 
(Pennisi 2011) requiring parallel execution in High Performance Computing (HPC) 
environments, such as clusters, grids, and more recently, clouds. These SWfMS also 
provide provenance capabilities to record the historical information about the workflow 
execution behavior (Freire et al. 2008) to help workflow analysis, reproducibility and 
validation. Although several SWfMS provide sophisticated mechanisms for executing 
large-scale scientific workflows in distributed HPC environments, most of them execute 
the workflow in an “offline” way (Ailamaki et al. 2010), i.e. as a black-box. Online 
monitoring and debugging may save significant amounts of workflow execution time, 
when unexpected behavior can be detected way before the end of workflow execution. 
When debugging can analyze the relation between execution data, workflow data and 
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domain data, scientists have a much clear picture of the experiment dataflow (Mattoso 
et al. 2013). When this analysis is done at runtime, significant time may be saved.  
 We consider here three types of unexpected execution behavior, one is related to 
execution performance, the second is aware of the workflow stage of execution and the 
third is related to data-flow generation, including domain data analysis (Gonçalves et al. 
2012). Execution performance may indicate that a task is taking longer than expected. It 
also identifies failures from node, task or program crashes, among others. Workflow 
execution may be unexpected when a data is generated and does not produce the 
expected result value. In fact, this may prevent the next activity to consume it, 
generating an anomaly. For example, the specification of a filter value may not be 
adequate, generating an excessive or too restrictive data-flow. Since these results would 
not cause any failure on the execution, scientists would only realize the filter 
configuration problem by the end of the whole workflow execution. By further 
analyzing domain data, scientists may evaluate if domain data is not compatible with the 
defined filter value. Therefore, data-flow monitoring also helps to improve workflow 
performance and should be together with domain data and execution monitoring. 

To help workflow execution monitoring and debugging, related work like 
Stampede (Gunter et al. 2011) and Panda (Ikeda et al. 2012) support data-oriented 
scientific workflow analysis using runtime execution data. These systems are focused 
on workflow activities and their corresponding jobs and tasks executions, using 
performance analyzers, such as, NetLogger to associate execution behavior to activities. 
They represent performance metrics and file generations in a relational database so that 
users can query and identify execution failures in scientific workflows, at runtime, even 
when the workflow execution does not crash. Stampede has a visual interface where 
execution behavior may be visualized and analyzed with R package (Vahi et al. 2013).  

Nevertheless, these powerful execution performance monitoring and debugging 
do not allow for domain data-flow generation debugging. This would require access to 
provenance data-flow and some related domain data, also at runtime. When provenance 
data and execution monitoring data are in separate databases, it is difficult to relate 
execution behavior with the data that caused an unexpected activity execution. For 
example, if the user detects that a specific task failed or is taking too long, it might be 
helpful to check the inputs and parameters of this task, or in which workflow iteration 
this failure occurred. To track this, the user would need first to query the execution 
monitoring database to find the instance of the failed task, and then query the domain 
data-flow, to manually try to relate them all together, i.e., the execution instance task 
with its corresponding input data-flow.  
 In another related work, MTCProv (Gadelha et al. 2012) stores performance 
execution time in the same database as provenance data and it helps scientists in data-
flow debugging through provenance queries. However, in MTCProv, online monitoring 
is not supported, therefore debugging queries can only be submitted after the workflow 
finishes its execution. Unexpected data-flow might not generate a failure occurrence, 
however it would still represent an anomalous execution requiring aborting the 
execution as soon as possible. Waiting until the end to debug, considering performance 
and data-flow, change the workflow specification and resubmitting it takes too long.  
 Differently from the current mainstream, Chiron (Ogasawara et al. 2011) and its 
extension to cloud environments, SciCumulus, are the only SWfMS that support 

29th SBBD – SBBD Proceedings – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

68



  

debugging based on execution performance and domain data-flow generation. They 
obtain that by integrating all these data at their provenance database, available for 
traversal analysis at runtime. In this paper we go deep into specific details of the data-
flow algebraic approach (Ogasawara et al. 2011), adopted in both Chiron and 
SciCumulus, to show the potential of data analysis in real applications. Therefore, this 
paper presents our achievements and lessons learned from users exploring the runtime 
provenance support of SciCumulus in debugging real large-scale bioinformatics 
workflows (Ocaña et al. 2011, Ocaña et al. 2014).  
 This paper is organized as follows: Section 2 explains the importance of 
provenance in scientific workflow monitoring and debugging; Section 3 describes case 
of studies for workflow debugging at runtime using SciCumulus; and finally, Section 4 
presents our conclusions and future research directions. 

2. Data-flow Runtime Analysis 
The workflow data centric algebraic approach (Ogasawara et al. 2011), that drives the 
execution engine of both Chiron and SciCumulus, uses relations to store the workflow 
specification as a prospective provenance and the workflow execution as a retrospective 
provenance, all in the same database. In other words, prospective provenance presents a 
workflow composition (such as activities and your dependencies), while retrospective 
provenance determines properties about workflow execution (such as the directory to 
execute workflow or database hostname) (Freire et al. 2008). This algebraic approach 
introduces a set of operators to the relational algebra (Map, Reduce, Filter, SplitMap, 
MRQuery and SRQuery), which considers both workflow activities and data-flow as 
operands. Each activity of the workflow is associated to an operator, which has operand 
relations as input and all results of this activity execution are stored at an output 
relation, which can be the input operand relation to the operator associated to the next 
workflow activity. 
 To present the potential of monitoring and debugging, we show the algebraic 
view of two real workflows from the bioinformatics domain using SciCumulus. One is 
SciPhy, for phylogeny analyses (Ocaña et al. 2011) and the other is SciDock for 
molecular docking analyses (Ocaña et al. 2014). SciPhy and SciDock are complex 
workflows composed by several data and computing-intensive activities that may last 
for days, weeks or even months, to generate results.  We simplify them here and show 
the algebraic relations only for the most representative activities (programs) for both 
workflows: RAxML for SciPhy and autodock for SciDock. 
 SciPhy, partially represented in Figure 1, is modeled as two algebraic 
expressions: Rm ← Map(RAxML, Ri); Ro ← Reduce(TreeView, “model”, Rm). RAxML 
is followed by the phylogenetic analysis activity TreeView. Workflow parameters from 
the Command line are now attributes of input relation Ri and their values are inserted in 
Ri tuples (Figure 1.a). RAxML is executed n times with different input data for three 
parameters (i.e. the last attributes in Ri) generating n resulting tuples in the output 
relation Rm. Each tuple of Rm is related to the consumption of each Ri tuple (Figure 1.b). 
Attribute k relates Ri with Rm. TreeView executes a computational simulation by 
grouping Rm tuples by model (Reduce) into output relation Ro to obtain a phylogenetic 
tree and for analyzing/visualizing the quality of the tree (Figure 1.c).  
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 Scientists may query Rm at runtime, while the output tuples are still being 
generated. For example, a query may retrieve tuples with attributes Result = true and 
model = GTR, which were generated from a runtime calculated average bootstrap 
attribute value in Ri that are above a threshold. This would indicate an issue in the 
obtained model that will influence the topology of the trees. In another example, based 
on data-flow analysis, scientists decide that they are only interested on result models 
that generate trees where bootstrap quality-bp (AVG) > 90, and they may submit 
relational queries to Ro to filter out unwanted results for the next steps. Estimating 
adequate thresholds or filters before evaluating the data-flow is complex and 
anticipating the "right" value might not be possible. 

   
Figure 1. Reduced algebraic workflow representation of SciPhy 

 SciDock is a workflow for molecular docking that attempts to mimic the process 
of bringing together a protein and a ligand to form a non-covalent complex and to reveal 
the electrostatic and steric complementarity between the protein and the ligand. Figure 2 
shows the most representative activities of SciDock (autodock4) and the following 
docking analysis (Vina). Vina executes a computational simulation for analyzing/ 
visualizing the quality of the molecular docking for the receptor-ligand pairs (True, if it 
exists/False, otherwise), reinforcing the biological inferences attributed to each obtained 
molecular docking and statistical results. The algebraic workflow would be:  
Rx ← Map (autodock4, Re); Rs ← Map (Vina, Rx) ; represented by Figure 2.a and Figure 
2.b. 

–file%ENZ)01.phylip%–md%GTR%–bp%100%#%./RAxML%

Rm# Map(#raxml,#Ri#)#

k% file% model% bootstrap%

1' ENZ+01.phylip' GTR' 100'

2' ENZ+02.phylip' BLOSUM62' 100'
…'

n# ENZ+100.phylip' RtREV' 100'

Command#line:#

Ri#

raxml'

TreeView'

k% model% quality)bp%(AVG)% resultree%

1' GTR' 80' ENZ+01.raxml.tree'

2' BLOSUM62' 50' ENZ+02.raxml.tree'
…'

g# RtREV' 100' ENZ+100.raxml.tree'

k% model% result% file%

1' GTR' True' raxml+bp+01'

2' BLOSUM62' True' raxml+bp+02'
…'

n# RtREV' True' raxml+bp+100'

Rm#

Ro#

Ro# Reduce(#TreeView,#“model”,#Ri#)#

(a)%

(b)%

(c)%
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Figure 2. Reduced algebraic workflow representation of SciDock 

 Scientists may query Rx data-flow at runtime and check if it presents negative 
average FEB values and RMSD > 4 for any tuple. This would indicate an issue with the 
obtained ligand/receptor biophysical characteristics that will influence the existence (or 
not) of the docking process, depending on some the quality values (i.e., FEB, RMSD).  

3. Debugging Bioinformatics Workflows Using Execution and Domain Data 
During SciPhy and SciDock executions, SciCumulus provenance database was queried 
to detect possible unexpected situations from workflow executions. We discuss here 
queries related to performance execution time and data-flow generation for detecting 
domain-specific problems that would not be identified using monitoring and debugging 
mechanisms based only on performance execution data.  
 Domain-data relations with parameters consumed and produced by activities 
(i.e. Ri and Rm) are stored in the same provenance database that has execution data and 
typical workflow data. The workflow algebraic approach fostered this provenance data 
integration. Our provenance relations follow the PROV-Wf model (Costa et al. 2013), 
an extension of the W3C PROV standard (Groth and Moreau 2013). Using PROV-Wf, 
scientists are able to query performance execution time, domain and data-flow from 
workflow execution, as soon as they are generated, at runtime. PROV-Wf is composed 
by a set of classes (each one has an associated relation at the provenance database) to 
represent workflow concepts. In Figure 3 we show some of them, used in our queries: 
hworkflow, hactivity for prospective provenance and hactivation, relation, hfile, and 
hkeyspace for retrospective provenance. The instance of one hactivity of an hworkflow 
execution is represented as a tuple in hactivation through attribute actid. Table relation 
has its name and attributes defined by the user to store domain data values for input 
parameters that are consumed by an activity execution, like Ri is input to RAxML, and 
hfile provides access from activities to domain files, like ENZ-01.phylip in Ri and 
raxml-bp-01 in Rm. 

–p#042_1AEC.dpf#–l#042_1AEC.dlg###./autodock4##

Rx# Map(#autodock4#,#Re#)#

k# file#;#receptor# file#;#ligand# #run#

1* 042_1AEC.dpf* 042_1AEC.dlg* 5*

2* 042_1AIM.dpf* 042_1AIM.dlg* 5*
…*

n# 074_1ATK.dpf* 074_1ATK.dlg* 5*

Command#line:#

Re#

autodock4*

Vina*

k# ligand# docking# resultdocking#

1* 042* True* 042_1AEC_AD4.dlg*

2* 042* True* 042_1AIM_AD4.dlg*
…*

n# 074* True* 074_1ATK_AD4.dlg*

k# receptor# ligand# RMS
D#

FEB#

1* Na* 042* 10.3* E4.9*

2* Hg* 042* 9.1* E5.9*
…*

n# Cd* 074* 9.7* E8.4*

Rx#

Rs#

Rs# Map(#Vina#,#“ligand”,#Rx#)#

(a)#

(b)#
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Figure 3. Simplified view of PROV-Wf classes, adapted from (Costa et al. 2013) 

 All experiments presented in this section were performed in the Amazon EC2 
cloud environment using 32 Amazon’s large VMs (EC2 ID: m1.large – 7.5 GB RAM, 
850 GB storage, 2 cores).  Provenance data is managed using PostgreSQL database 
system, stored at Amazon S3. The execution of SciPhy generated 1,000 activations for 
200 input files. SciDock generated 1,798 activations for 200 input multi-fasta files. This 
means that for each execution of SciPhy 1 row is inserted in hworkflow table, 5 in 
hactivity, 1,000 in hactivation, 1,000 in relation, 1,000 in hkeyspace and 5,315 in hfile. 
In the case of SciDock, for each execution consuming 200 input data, 1 row is inserted 
in hworkflow, 9 in hactivity, 1,798 in hactivity, 1,798 in hrelation, 1,798 in hkeyspace 
and 10,380 rows in hfile. In total, the provenance database contains the following 
amount of rows per table: hworkflow: 757, hactivity: 3265, hactivation: 67,039, hfile: 
272,218, relation: 67,035, and hkeyspace: 67,035. The following selected queries were 
considered in our analysis to represent three types of the most frequent queries: 
execution, data-flow and monitoring queries. In this case, our monitoring query aims to 
identify activity executions with errors. 
Query 1 (Q1) – Execution time. SciPhy workflow is executed 1,000 times, varying a 
large number of parameters or data input. Errors can be identified at runtime, when 
scientists are monitoring and tracing one specific task. Using task execution time 
information, from historic provenance, users are able to identify performance variations 
that may indicate execution outliers. If one task is consuming more time to execute than 
expected (e.g. more than average execution time), there is an indication of alert. 
Scientists have to investigate if this performance variation is an error. Related data files 
are identified through provenance queries and then analyzed. In SciPhy, queries may 
check: the number of sequences in the input fasta file (i.e., if there are less than three or 
more than 100 fasta sequences); if the format (for amino acid sequences) is recognized; 
or if the default number for bootstrap replication is 100. When scientists are able to 
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analyze performance metrics with domain-specific data, they can evaluate if the 
execution is likely to be correct or not. This execution time debugging with domain data 
saved 15% of time, since waiting until the end of the execution would require additional 
3.1 hours (Ocaña et al. 2011).  
Q1: SELECT w.tag, a.tag,  t.taskid, t.exitstatus, t.processor, t.workspace, t.status, t.endtime, t.starttime, 

extract ('epoch' from (t.endtime-t.starttime))||',' as duration, r.file, r.bootstrap  
FROM hworkflow w, hactivity a, hactivation t, hkeyspace k, relation r 
WHERE w.wkfid = a.wkfid  AND a.actid = t.actid AND t.taskid = k.taskid AND r.ik >= k.iik 
AND r.ik <= k.fik 
AND w.tag like '%SciPhy%' 
AND r.bootstrap <> 100 
AND duration > (SELECT avg(extract ('epoch' from (t.endtime-t.starttime))||',')- 

2.4*stddev(extract('epoch' from (t.endtime-t.starttime))||',')  
FROM hactivation ac WHERE ac.actid=t.actid) 

Query 2 (Q2) – Data-flow. In SciDock workflow, approximately 30% of executions 
failed. Problems involving environment and workflow specification were checked and 
discarded (i.e. any problems related to virtual machines or environment configuration). 
Therefore, we concluded that failures were associated with input data (i.e. ligands or 
receptor structures). Querying the provenance database, the errors were constantly 
traced back to a specific set of ligand structures (i.e. very small ligands), which were not 
compatible with receptors of the cysteine protease family. Then, these ligands were 
detected and excluded for a posteriori executions. At the end, results were re-verified 
with Q2 to confirm that the “.dlg” files (containing the final docking results) were 
correctly generated (i.e. as Successful Completion), and consequently, the docking 
quality scores (e.g. FEB and RMSD) analyzed by specialists. This data-flow query 
saved 30% of time, since waiting the execution end would require another 21.2 hours. 
However, even after waiting for the workflow completions, if this direct access to the 
set of ligand structures was not available, it would be very difficult to identify that the 
anomalous ligands all shared a common property, related to the failures. 
Q2: SELECT w.tag, a.tag, f.fname, f.fsize, f.fdir, r.RMSD, r.FEB 

FROM hworkflow w, hactivity a, hactivation t, hfile f, hkeyspace k, relation r 
WHERE w.wkfid = a.wkfid AND a.actid = t.actid AND f.taskid = t.taskid AND t.taskid = k.taskid 
AND r.ik >= k.iik AND r.ik <= k.fik 
AND w.tag like '%SciDock%' AND f.fname like '%dlg%'  AND t.exitstatus = 0 

Query 3 (Q3) Unexpected program errors. By default, programs like AutoDock and 
AutoDock Vina do not recognize a set of atoms (e.g., Na, Hg, Ac, Cd, Ce, V, K) 
producing the following error message: “Unknown receptor type: ‘Hg’”. The problem is 
that users cannot specify a priori which atoms are inside each ligand/receptor structure. 
However, in structures of enzyme families, as cysteine protease, used in our 
experiments, some receptor structures can contain mercury (Hg). This scenario was 
detected by querying the provenance database at runtime. Q3 searches for tasks that 
present some failures in the execution (i.e. that produced error messages as outputs) and 
whose input data has the atom Hg in its cysteine protease structures. When identifying 
these tasks, the Hg molecule was included to be recognized in cysteine protease 
receptors. Finally, all executions that failed due to this problem were successfully 
identified and re-executed. This data-flow query saved 3% of time, since waiting until 
the end of the execution would require 3.9 hours. Again, debugging without provenance 
would be even more time consuming. 
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Q3: SELECT w.wkfid, w.tag 
FROM hworkflow w, hactivity a, hactivation t, hkeyspace k, relation r 
WHERE w.wkfid = a.wkfid AND a.actid = t.actid AND t.taskid = k.taskid AND r.ik >= k.iik 
AND r.ik <= k.fik 
AND w.tag like '%SciDock%'  
AND a.tag = ‘autogrid4’ 
AND r.receptor == ‘Hg’ 
AND (t.terr <> ‘’ OR t.exitstatus <> 0) 

 The unexpected behavior detected by queries 1, 2 and 3 could only be identified 
by associating performance execution data with provenance data and domain-specific 
data. Using relational queries, scientists can check on thousands of executions related to 
hundreds of thousands of domain data files. This represents a step forward to scientists 
regarding related work. While querying the integrated database at run time, users do not 
have to manually find the required data files, download them and analyze each file 
individually (without data flow context) to detect failures and debug unexpected 
behavior in their workflow execution. Typical queries are also available as simpler 
parameterized query templates. 

4. Conclusions and Final Remarks 
Debugging mechanisms in HPC scientific workflows are essential to support the 
exploratory nature of science and the dynamic process involved in scientific analyses. 
Large-scale experiments can benefit from debugging features to reduce the incidence of 
errors, decrease the total execution time and sometimes reduce the financial cost 
involved. In most of the executions, typical HPC profiling tools are too low level, not 
aware of workflow resources. The debugging process has to explore the content of input 
data, iteratively searching for the identification of what caused the anomalous 
execution. Since each workflow execution may consist of hundreds or even thousands 
of activities that are executed in parallel, it is unviable to perform a manual monitoring 
and debugging on data-flow generation.  
 This paper discussed the importance of W3C provenance data enriched with 
performance and domain-specific data. Furthermore, real bioinformatics workflow 
executions present how to make fine-tuning debugging using the provenance data at 
runtime. The actions taken from debugging provenance queries improved the quality of 
results and time spent to complete all computations in bioinformatics scenarios. Similar 
results were obtained in different domains such as deep water oil exploitation 
(Ogasawara et al. 2011), numerical reduced order models (Dias et al. 2011) and text 
mining (Dias et al. 2013).  
 Data storage and access from thousands workflow executions are also important 
issues. When workflow execution and provenance data are in the same database, queries 
are simpler to formulate and a lot of data redundancy is avoided. However, access to 
this database may become a bottleneck. Using well-known parallel relational database 
techniques and new lighter SQL systems may leverage this. This integrated provenance 
database only has metadata for one specific execution. When the workflow finishes its 
execution, this database may be loaded into a larger provenance warehouse. We believe 
that database technology has an unexplored potential to further improve existing 
solutions for workflow debugging in parallel large data-flow executions.  

29th SBBD – SBBD Proceedings – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

74



  

References 
Abouelhoda, M., Issa, S., Ghanem, M., (2012), "Tavaxy: Integrating Taverna and 

Galaxy workflows with cloud computing support", BMC Bioinformatics, v. 13, 
p. 77.  

Ailamaki, A., Kantere, V., Dash, D., (2010), "Managing scientific data", 
Communications of the ACM, v. 53, n. 6 (Jun.), p. 68–78.  

Costa, F., Silva, V., de Oliveira, D., Ocaña, K., Ogasawara, E., Dias, J., Mattoso, M., 
(2013), "Capturing and Querying Workflow Runtime Provenance with PROV: 
A Practical Approach". In: EDBT/ICDT ’13 Workshops, p. 282–289, New York, 
NY, USA. 

Dias, J., Ogasawara, E., Oliveira, D., Porto, F., Coutinho, A., Mattoso, M., (2011), 
"Supporting Dynamic Parameter Sweep in Adaptive and User-Steered 
Workflow". In: 6th WORKS, p. 31–36, Seattle, WA, USA. 

Dias, J., Ogasawara, E., de Oliveira, D., Porto, F., Valduriez, P., Mattoso, M., (2013), 
"Algebraic dataflows for big data analysis". In: 2013 IEEE International 
Conference on Big Data2013 IEEE International Conference on Big Data, p. 
150–155 

Freire, J., Koop, D., Santos, E., Silva, C. T., (2008), "Provenance for Computational 
Tasks: A Survey", Computing in Science and Engineering, v.10, n. 3, p. 11–21.  

Gadelha, L. M. R., Wilde, M., Mattoso, M., Foster, I., (2012), "MTCProv: a practical 
provenance query framework for many-task scientific computing", Distributed 
and Parallel Databases, v. 30, n. 5-6 (Oct.), p. 351–370.  

Gonçalves, J. C. A. R., Oliveira, D., Ocaña, K. A. C. S., Ogasawara, E., Mattoso, M. 
(2012) "Using Domain-Specific Data to Enhance Scientific Workflow Steering 
Queries", In: IPAW 2012, p. 152-167 

Gunter, D., Deelman, E., Samak, T., Brooks, C. H., Goode, M., Juve, G., Mehta, G., 
Moraes, P., Silva, F., et al., (2011), "Online workflow management and 
performance analysis with Stampede". In: Network and Service Management 
(CNSM), 2011 7th International Conference on, p. 1 –10 

Hey, T., Tansley, S., Tolle, K., (2009), The Fourth Paradigm: Data-Intensive Scientific 
Discovery. Microsoft Research. 

Ikeda, R., Cho, J., Fang, C., Salihoglu, S., Torikai, S., Widom, J., (2012), "Provenance-
Based Debugging and Drill-Down in Data-Oriented Workflows". IEEE 28th 
International Conference on Data Engineering (ICDE), p. 1249–1252 

Lee, K., Paton, N. W., Sakellariou, R., Deelman, E., Fernandes, A. A. A., Mehta, G., 
(2008), "Adaptive Workflow Processing and Execution in Pegasus". In: 3rd 
International Conference on Grid and Pervasive Computing, p. 99–106, 
Kunming, China. 

Mattoso, M., Ocaña, K., Horta, F., Dias, J., Ogasawara, E., Silva, V., de Oliveira, D., 
Costa, F., Araújo, I., (2013), "User-steering of HPC workflows: state-of-the-art 
and future directions". In: 2nd SWEET ACM SIGMOD Workshop, p. 1–6, New 
York, NY, USA. 

29th SBBD – SBBD Proceedings – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

75



  

Ocaña, K. A. C. S., Oliveira, D., Ogasawara, E., Dávila, A. M. R., Lima, A. A. B., 
Mattoso, M., (2011), "SciPhy: A Cloud-Based Workflow for Phylogenetic 
Analysis of Drug Targets in Protozoan Genomes". In: BSB, p. 66–70, Berlin, 
Heidelberg. 

Ocaña, K., Benza, S., Oliveira, D., Dias, J., Mattoso, M., (2014), "Exploring Large 
Scale Receptor-Ligand Pairs in Molecular Docking Workflows in HPC Clouds". 
In: 13th IEEE International Workshop on High Performance Computational 
Biology (HiComb 2014),  IPDPS, Phoenix, Arizona, USA, p. 536-545. 

Ogasawara, E., Dias, J., Oliveira, D., Porto, F., Valduriez, P., Mattoso, M., (2011), "An 
Algebraic Approach for Data-Centric Scientific Workflows", PVLDB 
Endowment, v. 4, n. 12, p. 1328–1339.  

Oliveira, D., Ocaña, K. A. C. S., Ogasawara, E., Dias, J., Gonçalves, J., Baião, F., 
Mattoso, M., (2013), "Performance evaluation of parallel strategies in public 
clouds: A study with phylogenomic workflows", Future Generation Computer 
Systems, v. 29, n. 7 (Sep.), p. 1816–1825.  

Oliveira, D., Ogasawara, E., Baião, F., Mattoso, M., (2010), "SciCumulus: A 
Lightweight Cloud Middleware to Explore Many Task Computing Paradigm in 
Scientific Workflows". In: 3rd International Conference on Cloud Computing, 
p. 378–385, Washington, DC, USA. 

Pennisi, E., (2011), "Will Computers Crash Genomics?", Science, v. 331, n. 6018 
(Feb.), p. 666–668.  

Vahi, K., Harvey, I., Samak, T., Gunter, D., Evans, K., Rogers, D., Taylor, I., Goode, 
M., Silva, F., et al., (2013), "A Case Study into Using Common Real-Time 
Workflow Monitoring Infrastructure for Scientific Workflows", Journal of Grid 
Computing, v. 11, n. 3 (Sep.), p. 381–406.  

Wozniak, J. M., Armstrong, T. G., Maheshwari, K., Lusk, E. L., Katz, D. S., Wilde, M., 
Foster, I. T., (2012), "Turbine: a distributed-memory dataflow engine for 
extreme-scale many-task applications", p. 1–12 

 

29th SBBD – SBBD Proceedings – ISSN 2316-5170 October 6-9, 2014 – Curitiba, PR, Brazil

76


