An improved particle filter for sparse environments

Towards a distributed computing model that characterizes dynamics of mobile networks

Edson PrestesMarcus RittGustavo Führ

Luciana ArantesAlfredo GoldmanPierre Sens

In this paper, we combine a path planner based on Boundary Value Problems (BVP) and Monte Carlo Localization (MCL) to solve the wake-up robot problem in a sparse environment. This problem is difficult since large regions of sparseenvironments do not provide relevant information for the robot to recover its pose. We propose a novel method that distributes particle poses only in relevant parts of the environment and leads the robot along these regions using the numeric solution of a BVP. Several experiments show that the improved method leads to a better initial particle distribution and a better convergence of the localization process.

Caso o link acima esteja inválido, faça uma busca pelo texto completo na Web: Buscar na Web

Biblioteca Digital Brasileira de Computação - Contato:
     Mantida por: