BDBComp
Parceria:
SBC
Dynamic Allocation of Data-Objects in the Web, Using Self-tuning Genetic Algorithms

Joaquín PérezRodolfo A. PazosGraciela Mora Guadalupe Castilla V.José A. Martínez F.Vanesa Landero N.Héctor J. Fraire H.Juan Javier González Barbosa

In this paper, a new mechanism for automatically obtaining some control parameter values for Genetic Algorithms is presented, which is independent of problem domain and size. This approach differs from the traditional methods which require knowing the problem domain first, and then knowing how to select the parameter values for solving specific problem instances. The proposed method uses a sample of problem instances, whose solution allows to characterize the problem and to obtain the parameter values. To test the method, a combinatorial optimization model for data-object allocation in the Web (known as DFAR) was solved using Genetic Algorithms. We show how the proposed mechanism allows to develop a set of mathematical expressions that relates the problem instance size to the control parameters of the algorithm. The expressions are then used, in on-line process, to control the parameter values. We show the last experimental results with the self-tuning mechanism applied to solve a sample of random instances that simulates a typical Web workload. We consider that the proposed method principles must be extended to the self-tuning of control parameters for other heuristic algorithms.

http://springerlink.metapress.com/content/fm8rl6yh5nddqxxu/?p=27538ac76cdc4609a96af23dc15d73ca&p

Caso o link acima esteja inválido, faça uma busca pelo texto completo na Web: Buscar na Web

Biblioteca Digital Brasileira de Computação - Contato: bdbcomp@lbd.dcc.ufmg.br
     Mantida por:
LBD