Improving 2D mesh image segmentation with Markovian Random Fields

Alex Jesus Cuadros-VargasLeandro C. GerhardingerMario de CastroJoão Batista NetoLuis Gustavo Nonato

Traditional mesh segmentation methods normally operate on geometrical models with no image information. On the other hand, 2D image-based mesh generation and segmentation counterparts, such as Imesh [6] perform the task by following a set of well defined rules derived from the geometry of the triangles, but with no statistical information of the mesh elements. This paper presents a novel segmentation method that combines the original Imesh image-based segmentation approach with Markovian Random Field (MRF) models. It takes an image as input, generate a mesh of triangles and, by treating the mesh as a Markovian field, produces quality unsupervised segmentation. The results have demonstrated that the method not only provides better segmentation than that of original Imesh, but is also capable of producing MRF-like segmentation output for certain types of images, with considerable cut in processing times.

Caso o link acima esteja inválido, faça uma busca pelo texto completo na Web: Buscar na Web

Biblioteca Digital Brasileira de Computação - Contato:
     Mantida por: