Probabilistic Logic with Strong Independence

Fabio Gagliardi CozmanCassio Polpo de CamposJosé Carlos Ferreira da Rocha

This papers investigates the manipulation of statements of strong independence in probabilistic logic. Inference methods based on polynomial programming are presented for strong independence, both for unconditional and conditional cases. We also consider graph-theoretic representations, where each node in a graph is associated with a Boolean variable and edges carry a Markov condition. The resulting model generalizes Bayesian networks, allowing probabilistic assessments and logical constraints to be mixed.

Caso o link acima esteja inválido, faça uma busca pelo texto completo na Web: Buscar na Web

Biblioteca Digital Brasileira de Computação - Contato:
     Mantida por: