BDBComp
Parceria:
SBC
Evolutionary Training of SVM for Multiple Category Classification Problems with Self-adaptive Parameters

Ángel Kuri-MoralesIván Mejía-Guevara

We describe a methodology to train Support Vector Machines (SVM) where the regularization parameter (C) is determined automatically via an efficient Genetic Algorithm in order to solve multiple category classification problems. We call the kind of SVMs where C is determined automatically from the application of a GA a 'Genetic SVM' or GSVM. In order to test the performance of our GSVM, we solved a representative set of problems by applying one-versus-one majority voting and one-versus-all winner-takes-all strategies. In all of these the algorithm displayed very good performance. The relevance of the problem, the algorithm, the experiments and the results obtained are discussed.

http://www.springerlink.com/content/d1495n7310313657

Caso o link acima esteja inválido, faça uma busca pelo texto completo na Web: Buscar na Web

Biblioteca Digital Brasileira de Computação - Contato: bdbcomp@lbd.dcc.ufmg.br
     Mantida por:
LBD