Automatic Gender Identification by Speech Signal Using Eigenfiltering Based on Hebbian Learning

Rubem Dutra R. FagundesAlexandre A. Cheuiche MartinsFernando Comparsi de CastroMaria Cristina Felippetto de Castro

This work presents an Automatic Gender Identification (AGI) algorithm based on Eigenfiltering. A Maximum Eigenfilter is implemented by means of an Artificial Neural Network (ANN) trained via Generalized Hebbian Learning (GHL). The Eigenfilter uses Principal Component Analysis (PCA) to perform maximum information extraction from the speech signal, which enhances correlated information and improves the pattern analysis. Also, a well known speech processing technique is applied, the Mel-Frequency Cepstral Coefficients (MFCC). This technique is a classical approach for speech feature extraction, and it is a very efficient way to represent physiological voice parameters. The pattern classification uses a Radial Basis Function (RBF) ANN. Experimental results have shown that the identification algorithm overall performance was widely increased by the Eigenfiltering process.

Caso o link acima esteja inválido, faça uma busca pelo texto completo na Web: Buscar na Web

Biblioteca Digital Brasileira de Computação - Contato:
     Mantida por: