SAR Image Classification Using a Neural Classifier Based on Fisher Criterion

Alexsandro M. JacobElder Moreira HemerlyDavid Fernandes

A supervised neural classifier based on Fisher criterion is implemented to classify two regions in a real speckled SAR image. Regions around pre-classified pixels are presented to train the neural network that learns a sub-optimal set of masks via back-propagation algorithm. Classification performance is evaluated by using the ground truth. Results with higher than 90% of correct classification are obtained. The results are also compared with a statistical classifier based on Kullback-Liebler distance via the Kappa coefficient.

Caso o link acima esteja inválido, faça uma busca pelo texto completo na Web: Buscar na Web

Biblioteca Digital Brasileira de Computação - Contato:
     Mantida por: