BDBComp
Parceria:
SBC
Segmentação automática de áreas urbanas em imagens de sensoriamento remoto

Anderson MarcoAdriana B. BrunoFrancisco A. RodriguesLuciano da F. CostaOdemir Martinez Bruno

A adoção de ferramentas e métodos de visão computacional aplicados as imagens de sensoriamento remoto pode trazer um grande benefício para os estudos de urbanismo. Neste trabalho é apresentado um arcabouço computacional para auxiliar a aquisição e análise de imagens de sensoriamento remoto, provindas do Google Earth®. O sistema proposto se conecta ao Google Earth® e compõe uma imagem especificada pelas coordenadas de latitude e longitude informadas pelo usuário. O sistema também segmenta automaticamente a imagem em áreas edificadas e não-edificadas. O processo de segmentação é realizado por meio de métricas do histograma cromático. É apresentado um experimento com imagens de duas cidades do interior paulista, São Carlos e Rio Claro, a fim de validar o sistema e determinar quais as melhores métricas de histogramas devem ser utilizadas para a tarefa.

http://www.lbd.dcc.ufmg.br/colecoes/wvc/2010/0048.pdf

Caso o link acima esteja inválido, faça uma busca pelo texto completo na Web: Buscar na Web

Biblioteca Digital Brasileira de Computação - Contato: bdbcomp@lbd.dcc.ufmg.br
     Mantida por:
LBD