BDBComp
Parceria:
SBC
Combining Meta-learning and Search Techniques to SVM Parameter Selection

Gomes, T.A.F.Prudencio, R.B.C.Soares, C.Rossi, A.L.D.Carvalho, A.

Support Vector Machines (SVMs) have achieved very good performance on different learning problems. However, the success of SVMs depends on the adequate choice of a number of parameters, including for instance the kernel and the regularization parameters. In the current work, we propose the combination of Meta-Learning and search techniques to the problem of SVM parameter selection. Given an input problem, Meta-Learning is used to recommend SVM parameters based on well-succeeded parameters adopted in previous similar problems. The parameters returned by Meta-Learning are then used as initial search points to a search technique which will perform a further exploration of the parameter space. In this combination, we envisioned that the initial solutions provided by Meta-Learning are located in good regions in the search space (i.e. they are closer to the optimum solutions). Hence, the search technique would need to evaluate a lower number of candidate search points in order to find an adequate solution. In our work, we implemented a prototype in which Particle Swarm Optimization (PSO) was used to select the values of two SVM parameters for regression problems. In the performed experiments, the proposed solution was compared to a PSO with random initialization, obtaining better average results on a set of 40 regression problems.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5715217

Caso o link acima esteja inválido, faça uma busca pelo texto completo na Web: Buscar na Web

Biblioteca Digital Brasileira de Computação - Contato: bdbcomp@lbd.dcc.ufmg.br
     Mantida por:
LBD