BDBComp
Parceria:
SBC
Compulsory Flow Q-Learning: an RL algorithm for robot navigation based on partial-policy and macro-states

Valdinei Freire da SilvaAnna Helena Reali Costa

Reinforcement Learning is carried out on-line, through trial-and-error interactions of the agent with the environment, which can be very time consuming when considering robots. In this paper we contribute a new learning algorithm, CFQLearning, which uses macro-states, a low-resolution discretisation of the state space, and a partial-policy to get around obstacles, both of them based on the complexity of the environment structure. The use of macro-states avoids convergence of algorithms, but can accelerate the learning process. In the other hand, partial-policies can guarantee that an agent fulfils its task, even through macro-state. Experiments show that the CFQ-Learning performs a good balance between policy quality and learning rate.

http://www.lbd.dcc.ufmg.br/colecoes/jbcs/15/3/007.pdf

Caso o link acima esteja inválido, faça uma busca pelo texto completo na Web: Buscar na Web

Biblioteca Digital Brasileira de Computação - Contato: bdbcomp@lbd.dcc.ufmg.br
     Mantida por:
LBD